
Task: LUC
Luck of the Paw
AACPP SuSe 2025 Round 5 Memory: 256MiB 2025.06.17 – 2025.06.24

The neighbourhood cats love to play a unique feline card game – Pawker. Pawker is played
1v1, with one cat always being the clear winner. The cats treat the game very seriously. Every
night a cat that wins the most pawker games against other cats gets the nickname “Felix”¹
for the next day. In case of a tie, the cats vote who was the luckiest among the top scorers.

Last night, Dexter earned this nickname for the first time. However, after running around
after squirrels this morning he completely forgot how many games he won. He remembers
who played against whom how many times, but not the outcome of any of the games.

Since this is a very momentous occasion, Dexter would like to find out how many games
he had to win and scratch it down somewhere for posterity. Moreover, he’d like to make sure
he got the number correct and determine outcomes of all matches that would make his win
possible. Since Dexter just ran off to chase another squirrel, it’s up to you to solve his problem!

Input
The first line of input contains two integers, 𝑛 and 𝑚, the number of cats and the number of
pawker rounds played. Dexter doesn’t remember which number he is.

The next 𝑚 lines describe the rounds. Each line contains two integers, 1 ≤ 𝑥𝑖, 𝑦𝑖 ≤ 𝑛,
meaning cats 𝑥𝑖 and 𝑦𝑖 played against each other. Cats don’t play themselves (𝑥𝑖 ≠ 𝑦𝑖),
however the same pair of cats can play multiple rounds between each other.

Output
The first line of output should contain a single integer – the minimal number of pawker rounds
that Dexter had to win to be elected the Felix.

The next 𝑚 lines should contain the description of a possible set of outcomes of all rounds.
If in the 𝑖-th round 𝑥𝑖 won against 𝑦𝑖, then the line should contain the single number 1;
otherwise, if 𝑦𝑖 won against 𝑥𝑖, it should contain the single number 0. There might be more
than one valid set of outcomes – your program may output any of them.

Examples
For the input:
4 4
1 2
1 3
1 4
1 2

a correct output is:
1
0
0
0
1

Wins (𝑖-th row is the number of wins of 𝑖 against all others)

1 2 3 4 Σ
1 1 0 0 1
2 1 1
3 1 1
4 1 1

¹Meaning “lucky” in an old language used by ancient Roman cats.

1 / 2 Luck of the Paw



One game was enough to become Felix this night. In this assignment every cat won exactly
one game. One could flip the assignment of round 1 and 4 between cats 1 and 2 and get a
valid assignment as well.

For the input:
4 6
1 2
1 2
1 3
2 3
3 4
2 4

a correct output is:
2
1
1
0
1
0
0

Wins (𝑖-th row is the number of wins of 𝑖 against all others)

1 2 3 4 Σ
1 2 0 0 2
2 0 1 1 2
3 1 0 0 1
4 0 1 1

There is no set of outcomes where only 1 win would suffice to become the Felix. There are
other valid assignments for 2 wins, for example 011001.

Additional examples
The following initial tests are also available:
• 0c – 𝑛 = 10, 𝑚 = 10, cats 1 ≤ 𝑖 < 10 played exactly one game with 𝑖 + 1, and 10 played with
1 once;

• 0d – 𝑛 = 100, 𝑚 = 990, 1 played ten games with everyone else;
• 0e – 𝑛 = 10 000, 𝑚 = 9 998, for 1 ≤ 𝑖 < 5 000 the cat 2𝑖 played two games with cat 2𝑖 − 1;
• 0f – 𝑛 = 10 000, 𝑚 = 199 980, for 1 ≤ 𝑖 < 10 000 played twenty games with cat 𝑖 + 1.

Limits
Your solution will be evaluated on a number of hidden test cases divided into groups. Points
for a group are awarded if and only if the submission returns the correct answer for each of
the tests in the group within the allotted time limit. These groups are organised into subtasks
with the following limits and points awarded.

Partial points
If your solution outputs the optimal number of wins (first line of output), and the other lines
are left blank or are not correct, it will receive 50% of the points for a given test group.

Subtask Limits Points
1. 1 ≤ 𝑛 ≤ 100, 1 ≤ 𝑚 ≤ 1 000 2
2. 1 ≤ 𝑛 ≤ 10 000, 1 ≤ 𝑚 ≤ 10 000 4
3. 1 ≤ 𝑛 ≤ 10 000, 1 ≤ 𝑚 ≤ 200 000 4

2 / 2 Luck of the Paw


	Input
	Output
	Examples
	Additional examples

	Limits
	Partial points


