
Task: TAS
Town Assembly Square
AACPP SuSe 2024 Round 4 Memory: 7MiB (Java: 104MiB) 2024.06.11 – 2024.06.25

With the continuous success of experimental programmes, Byteland’s next big idea is a city of
the future, built from the ground up. After the successful implementation of the Aerial Payload
Delivery programme, Byteman was awarded the Medal of Freedom. Thrilled with the award,
of his own volition he decided to join the new project as the urban planning consultant in the
IT Task Force.

The planning team, looking for a perfect spot to build the city at, divided the region into a
2D grid of 𝑛 axis-aligned rectangular zones with the goal of assigning districts to them later.
These zones are described by a bottom-left corner at (𝑥, 𝑦) and dimentions (𝑤, ℎ). They can
be tangential, but do not overlap (their area of intersection is 0).

It is agreed that the largest tangential group of zones will become the majestic Town As-
sembly Square (TAS¹), where people will gather to celebrate and host events. The planning

¹Not to be confused with Tool-Assisted Speedruns

team expects roads to connect zones, so zones "touching" each other with only corners also
count as tangential! To estimate the budget for the construction work, Byteman is tasked with
finding the TAS zones as well as the total area they occupy.

Input
In the first line of standard input there is a single integer 𝑛, number of zones on the grid.
There is at least one zone and they are listed in an arbitrary order.

The next 𝑛 lines contain the descriptions of the zones. In the 𝑖-th line there are four integers
𝑥𝑖, 𝑦𝑖, 𝑤𝑖, ℎ𝑖, describing the bottom-left corner of a zone, its width (length along the 𝑥-axis),
and its height (length along the 𝑦-axis).

Output
Your program should write two lines to standard output. The first line should contain one
integer, the total area of the TAS aka the biggest group of tangential rectangles.

The next line should contain a list of unique integers between 0 and 𝑛 − 1 inclusive, denot-
ing which rectangles belong to the TAS, in ascending order. If more than one set of rectangles
suits to be assigned as TAS, your program may output any one of the sets.

1 / 2 Town Assembly Square



Example
For the input:
8
14 1 2 2
16 9 1 5
11 3 5 2
3 4 2 5
5 9 3 2
21 3 2 8
13 2 1 1
13 8 3 5

the correct output is:
20
1 7

Figure 1: Visual representation of the region.
Zone numbering starts at 0.

Additional examples
The following initial tests are also available:
• 0b – sample for Subtask 1, 𝑛 = 16, similar to example above, 0 ≤ (𝑥, 𝑦) ≤ 15, one or more

answers, 1 ≤ (𝑤, ℎ) ≤ 3;
• 0c – sample for Subtask 2, 𝑛 = 25 variable-size rectangles, 0 ≤ (𝑥, 𝑦) ≤ 25, one answer, 1 ≤
(𝑤, ℎ) ≤ 4;

• 0d – sample for Subtask 3, 𝑛 = 100 unit-size rectangles, 0 ≤ (𝑥, 𝑦) ≤ 20, one or more an-
swers, (𝑤, ℎ) = (1, 1);

• 0e – sample for Subtask 4, 𝑛 = 10000, coordinate limits, −109 ≤ (𝑥, 𝑦) ≤ 109, one or more
answers, (𝑤, ℎ) = (400, 400);

• 0f – sample for Subtask 5, 𝑛 = 50000, max number of rectangles, −109 ≤ 𝑥 ≤ 109 and
−109 ≤ 𝑦 ≤ 109, one or more answers, 1 ≤ (𝑤, ℎ) ≤ 106.

Limits
Your solution will be evaluated on a number of hidden test cases divided into groups. Points
for a group are awarded if and only if the submission returns the correct answer for each of
the tests in the group within the allotted time limit. These groups are organised into subtasks
with the following limits and points awarded.

In all tests the area of each zone is limited by 106.

Subtask Limits Points
1. 1 ≤ 𝑛 ≤ 50, 0 ≤ 𝑥 ≤ 50, 0 ≤ 𝑦 ≤ 50, 1 ≤ 𝑤 ≤ 20, 1 ≤ ℎ ≤ 20 2
2. 1 ≤ 𝑛 ≤ 104, 0 ≤ 𝑥 ≤ 1000, 0 ≤ 𝑦 ≤ 1000, 1 ≤ 𝑤 ≤ 20, 1 ≤

ℎ ≤ 20
1

3. 1 ≤ 𝑛 ≤ 2 ∗ 104, 0 ≤ 𝑥 ≤ 1000, 0 ≤ 𝑦 ≤ 1000, 𝑤 = 1, ℎ = 1 2
4. 1 ≤ 𝑛 ≤ 104, −109 ≤ 𝑥 ≤ 109, −109 ≤ 𝑦 ≤ 109, 1 ≤ 𝑤 ≤

400, 1 ≤ ℎ ≤ 400
2

5. 1 ≤ 𝑛 ≤ 5 ∗ 104, −109 ≤ 𝑥 ≤ 109, −109 ≤ 𝑦 ≤ 109, 1 ≤ 𝑤 ≤
106, 1 ≤ ℎ ≤ 106

3

2 / 2 Town Assembly Square


	Input
	Output
	Example
	Additional examples

	Limits

